An Improved K-means Method with Density Distribution Analysis
نویسندگان
چکیده
منابع مشابه
An Improved K-Means with Artificial Bee Colony Algorithm for Clustering Crimes
Crime detection is one of the major issues in the field of criminology. In fact, criminology includes knowing the details of a crime and its intangible relations with the offender. In spite of the enormous amount of data on offenses and offenders, and the complex and intangible semantic relationships between this information, criminology has become one of the most important areas in the field o...
متن کاملImproved smoothed analysis of the k-means method
The k-means method is a widely used clustering algorithm. One of its distinguished features is its speed in practice. Its worst-case running-time, however, is exponential, leaving a gap between practical and theoretical performance. Arthur and Vassilvitskii [3] aimed at closing this gap, and they proved a bound of poly(nk, σ−1) on the smoothed running-time of the k-means method, where n is the ...
متن کاملA Novel Density based improved k-means Clustering Algorithm – Dbkmeans
Mining knowledge from large amounts of spatial data is known as spatial data mining. It becomes a highly demanding field because huge amounts of spatial data have been collected in various applications ranging from geo-spatial data to bio-medical knowledge. The amount of spatial data being collected is increasing exponentially. So, it far exceeded human’s ability to analyze. Recently, clusterin...
متن کاملAn Improved K-Means Based Method for Fingerprint Segmentation with Sensor Interoperability
Fingerprint segmentation is an important step in an automatic fingerprint recognition system. Due to applications of various sensors, fingerprint segmentation inevitably suffers from sensor interoperability problem. K-means algorithm is one solution to address the sensor interoperability problem in fingerprint segmentation. However, the traditional k-means based method does not well deal with t...
متن کاملImproved Fuzzy Art Method for Initializing K-means
The K-means algorithm is quite sensitive to the cluster centers selected initially and can perform different clusterings depending on these initialization conditions. Within the scope of this study, a new method based on the Fuzzy ART algorithm which is called Improved Fuzzy ART (IFART) is used in the determination of initial cluster centers. By using IFART, better quality clusters are achieved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC Web of Conferences
سال: 2018
ISSN: 2261-236X
DOI: 10.1051/matecconf/201817601019